Metaplectic categories, gauging and property $F$
نویسندگان
چکیده
منابع مشابه
Metaplectic Ice
Abstract. We study spherical Whittaker functions on a metaplectic cover of GL(r + 1) over a nonarchimedean local field using lattice models from statistical mechanics. An explicit description of this Whittaker function was given in terms of Gelfand-Tsetlin patterns in [5, 17], and we translate this description into an expression of the values of the Whittaker function as partition functions of ...
متن کاملA Finiteness Property for Braided Fusion Categories
We introduce a finiteness property for braided fusion categories, describe a conjecture that would characterize categories possessing this, and verify the conjecture in a number of important cases. In particular we say a category has property F if the associated braid group representations factor over a finite group, and suggest that categories of integral Frobenius-Perron dimension are precise...
متن کاملMetaplectic Forms and Representations
where the image of A is in the center of G̃. If G and G̃ are topological groups, and if A is a discrete subgroup of the center of G̃, then we may think of G̃ as a cover of G, in the topological sense. So we will sometimes use the term covering group. Very often for us, A will be the group μn(F ) of n-th roots of unity, in a given field F . We will use this notation only if |μn(F )| = n. By a Metapl...
متن کاملAutomorphic Forms and Metaplectic Groups
In 1952, Gelfand and Fomin noticed that classical modular forms were related to representations of SL2(R). As a result of this realization, Gelfand later defined GLr automorphic forms via representation theory. A metaplectic form is just an automorphic form defined on a cover of GLr, called a metaplectic group. In this talk, we will carefully construct the metaplectic covers of GL2(F) where F i...
متن کاملOn Property (A) and the socle of the $f$-ring $Frm(mathcal{P}(mathbb R), L)$
For a frame $L$, consider the $f$-ring $ mathcal{F}_{mathcal P}L=Frm(mathcal{P}(mathbb R), L)$. In this paper, first we show that each minimal ideal of $ mathcal{F}_{mathcal P}L$ is a principal ideal generated by $f_a$, where $a$ is an atom of $L$. Then we show that if $L$ is an $mathcal{F}_{mathcal P}$-completely regular frame, then the socle of $ mathcal{F}_{mathcal P}L$ consists of those $f$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 2020
ISSN: 0040-8735
DOI: 10.2748/tmj/1601085623